A calculus for stencils on arbitrary grids with applications to parallel PDE solution
نویسنده
چکیده
The local data dependency pattern or stencil of a numerical algorithm is a structural property which is important for parallel computations. We present an algebraic notation for stencils on unstructured grids, derive some basic properties of stencils, and introduce two algorithms for constructing grid overlaps based on stencils. Finally, we show how these results lead to a more general and reusable approach to parallel PDE solution.
منابع مشابه
Bifurcation in a variational problem on a surface with a constraint
We describe a variational problem on a surface under a constraintof geometrical character. Necessary and sufficient conditions for the existence ofbifurcation points are provided. In local coordinates the problem corresponds toa quasilinear elliptic boundary value problem. The problem can be consideredas a physical model for several applications referring to continuum medium andmembranes.
متن کاملModification of A Finite Volume Scheme for Laplace's Equation
For Laplace’s equation, we discuss whether it is possible to construct a linear positive finite volume (FV) scheme on arbitrary unstructured grids. Dealing with the arbitrary grids, we state a control volume which guarantees a positive FV scheme with linear reconstruction of the solution. The control volume is defined by a property of the analytical solution to the equation and does not depend ...
متن کاملTwo-Dimensional Boundary-Conforming Orthogonal Grids for External and Internal Flows Using Schwarz-Christoffel Transformation
In this paper, a Schwarz-Christoffel method for generating two-dimensional grids for a variety of complex internal and external flow configurations based on the numerical integration procedure of the Schwarz-Christoffel transformation has been developed by using Mathematica, which is a general purpose symbolic-numerical-graphical mathematics software. This method is highly accurate (fifth order...
متن کاملHigh-order central ENO finite-volume scheme for hyperbolic conservation laws on three-dimensional cubed-sphere grids
A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-dimensional (3D) cubedsphere grids is described. The approach is based on a central essentially non-oscillatory (CENO) finite-volume method that was recently introduced for two-dimensional compressible flows and is extended to 3D geometries with structured hexahedral grids. Cubed-sphere grids feature hexahedr...
متن کاملNumerical Solution of Reacting Laminar Flow Heat and Mass Transfer in Ducts of Arbitrary Cross-Sections for Newtonian and Non-Newtonian Fluids
This study is concerned with the numerical analysis, formulation, programming and computation of steady, 3D conservation equations of reacting laminar flow heat and mass transfer in ducts of arbitrary cross-sections. The non-orthogonal boundary-fitted coordinate transformation method is applied to the Cartesian form of overall-continuity, momenta, energy and species-continuity equations, parabo...
متن کامل